FPT-Inapproximability of Minimum Codeword Problem over Large Fields

Bingkai Lin
National Institute of Informatics
Parameterized Approximation Algorithms Workshop

This talk is based on Section 6 of the paper Fixed-parameter Approximability of Boolean MinCSPs, Édouard Bonnet, László Egri, Bingkai Lin, Dániel Marx, https://arxiv.org/abs/1601.04935
Minimum Distance Codeword Problem

Notations:
\[d(v) := \#\{v_i \neq 0 : i \in [m]\} \] is the distance of \(v = (v_1, ..., v_m) \)
\[\langle w_1, ..., w_r \rangle := \{ \sum_{1 \leq i \leq r} c_i w_i : c_i \in F_q \} \] is the linear space generated by \(w_1, ..., w_r \).

Min Distance Codeword Problem (MDP) over \(F_q \):

Input: a set \(W = \{w_1, ..., w_n\} \) of vectors in \(F_q^m \), \(m = n^{O(1)} \) and \(k \)

Question: decide if there is a nonzero vector in \(\langle w_1, ..., w_n \rangle \) with distance \(\leq k \).

k-Even-Set = MDP over binary field (parameterized by \(k \))
- Does **k-EvenSet** have \(f(k)\text{poly}(n) \) time (FPT) algorithm?
- Long standing open problem! (see http://fptschool.mimuw.edu.pl/opl.pdf)
Outline

- FPT-inapproximability of MDP over large fields
 - From **Min Linear Dependent Set** to MDP
 - From **Biclique** to **Min-Linear-Dependent-Set**
- Reduce Field Size
 - Naïve approach
 - Via Nearest Codeword Problem (**NCP**)
 Combine with the work of [Arnab et al. ICALP '18]
- Conclusion
FPT-inapproximability of MDP over large fields
Gap-MDP

Gap-MDP\((k,k')\) over \(F_q\) :

Input: a set \(W=\{w_1,\ldots,w_n\}\) of vectors in \(F_q^m (m=n^{O(1)})\) and integers \(k'>k\).

Parameter: \(k\)

Question: distinguish between the following cases:

- (yes) \(<w_1,\ldots,w_n>\) has a nonzero vector with distance at most \(k\).
- (no) Every nonzero vector in \(<w_1,\ldots,w_n>\) has distance at least \(k'\).

The input instance is promised to be in one of these cases.

Polynomial time intractability of **Gap-MDP\((k,ck)\) over \(F_2\) for \(c>1\) (the gap \(c>1\) can be amplified to any constant factor)

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic?</th>
<th>Elementary?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dumer, Micciancio, and Sudan FOCS’99</td>
<td>RP≠NP</td>
<td>randomized</td>
</tr>
<tr>
<td>Cheng and Wan STOC’09</td>
<td>P≠NP</td>
<td>deterministic</td>
</tr>
<tr>
<td>Austrin and Khot ICALP’13</td>
<td>P≠NP</td>
<td>deterministic</td>
</tr>
</tbody>
</table>
Main Result

Main result:
Gap-MDP\((k,k\log k)\) over \(F_{\text{poly}}(n)\) is not FPT, assuming FPT\(\neq W[1]\).

Advantage:
• Proof is simple
• Refute super-polynomial time algorithm

Disadvantage:
• Use strong assumption FPT\(\neq W[1]\).
• Large field size.
The Reduction

Technique: use One-Side-Gap-Biclique as reduction source

Two steps:

- From Gap-Linear-Dependent-Set to Gap-MDP
- From One-Side-Gap-Biclique to Gap-Linear-Dependent-Set
From Gap-Linear-Dependent-Set to Gap-MDP
Gap Linear Dependent Set

Vectors $w_1,...,w_r$ are **linearly dependent** if there exist not all zero $c_1,...,c_r$ s.t.
$$
\sum_{1 \leq i \leq r} c_i w_i = (0,0,...,0)=0
$$

Gap-Linear-Dependent-Set(k,k'):

Input: a set $W=\{w_1,...,w_n\}$ of vectors in F_q^m, $m=n^{O(1)}, k'>k$.

Parameter: k

Question: distinguish between the following cases:
- (yes) W contains k linearly dependent vectors.
- (no) any k' vectors in W are not linearly dependent.
From Linear Dependent Set to MDP

Let \(W = \{w_1, ..., w_n\} \) be an instance of **Gap-Linear-Dependent-Set\((k,k')\)**

Choose an integer \(Q > k' \).

For each vector \(w \in W \), construct its corresponding vector \(w' \)

\[
\begin{align*}
 w'_1 &= (w_1, w_1, ..., w_1, 1, 0, ..., 0) \\
 w'_2 &= (w_2, w_2, ..., w_2, 0, 1, ..., 0) \\
 w'_n &= (w_n, w_n, ..., w_n, 0, 0, ..., 1)
\end{align*}
\]

- (yes) If \(W \) has \(k \) linearly dependent vectors, then \(\langle w'_1, ..., w'_n \rangle \) has \(k \)-distance vector.
- (no) If \(\langle w'_1, ..., w'_n \rangle \) contains a \(k' \)-distance vector, then \(W \) has \(k' \) linearly dependent vectors.[**must cancel out the Q copies part**]

Gap-Linear-Dependent-Set\((k,k')\) is not FPT => **Gap-MDP\((k,k')\)** is not FPT
From **One-Side-Gap-Biclique** to **Gap-Linear-Dependent-Set**
One-Side-Gap-Biclique

One-Side-Gap-Biclique(k, l, h)

Input: a bipartite graph $G=(L \cup R, E)$ and integers k, l, h.

Parameter: k

Question: distinguish between the following cases:

• (yes) there are k vertices in L with at least h common neighbors.

• (no) any k vertices in L have at most l common neighbors.

The input graph G is promised to be in one of these cases.

Theorem [Lin, SODA 2015]

One-Side-Gap-Biclique(k, l, h) is not FPT for $(\sqrt{k} + 1)! < l < h < n^{1/\sqrt{k}}$, assuming $W[1] \neq \text{FPT}$.
From Biclique to Linear Dependent Set

Let \(G=(L \cup R, E) \) be an instance of \textbf{One-Side-Gap-Biclique}(\(k, l, h \)).

Choose a prime power \(q>(|L|+|R|) \) s.t. \((L \cup R)\) can be treated as subset of \(F_q-\{0\} \).

Let \(B=h-1>k-1 \). Define a function \(g \) from \(L \cup R \) to \(F_q^B \):

- For every \(v \in R \), \(g(v)=(1, v^1, \ldots, v^{h-2}) \)
- For every \(u \in L \), \(g(u)=(1, u^1, \ldots, u^{k-2}, 0, \ldots, 0) \)

Partition each vector from \(F_q^{qB} \) into \(q \) blocks. Each block has \(B \) elements.

For \(u \in L \) and \(v \in R \), define \(w_{\{u,v\}} \in F_q^{qB} \)

\[
\begin{bmatrix}
0 & 0 & 0 & g(v) & 0 & 0 \\
0 & 0 & 0 & g(u) & 0 & 0 \\
\end{bmatrix}
\]

\(W=\{w_{\{u,v\}}:\{u,v\}\in E\} \) is an instance of \textbf{Gap-Linear-Dependent-Set}(\(kh, \sqrt[k]{\frac{h}{l}} \cdot h \)).
Properties of the function g

Let $B=\max\{k,h\}-1$. Define a function g from $L \cup R$ to F_q^B.

For every v in R, $g(v)=(1, v^1, \ldots, v^{h-2})$
For every u in L, $g(u)=(1, u^1, \ldots, u^{k-2},0,\ldots,0)$

(R1) The images of any $h-1$ vertices in R are linearly independent. [Vandermonde matrix]
(R2) The images of any h vertices in R are linearly dependent.

\[
g(v_1)=(1, v_1^1, \ldots, v_1^{h-2})
g(v_2)=(1, v_2^1, \ldots, v_2^{h-2})
\vdots
\]
\[
g(v_n)=(1, v_n^1, \ldots, v_n^{h-2})
\]

(L1) The images of any $k-1$ vertices in L are linearly independent.
(L2) The images of any k vertices in L are linearly dependent.
Yes Case

If \(G = (L \cup R, E) \) is a yes instance of **One-Side-Gap-Biclique\((k,l,h)\).**

There exist \(X \in \binom{L}{k} \) and \(Y \in \binom{R}{h} \) s.t. for all \(u \in X, v \in Y, \{u, v\} \in E \)

Claim: \(W' = \{w_{\{u,v\}}: u \in X, v \in Y\} \) is linearly dependent.

Suppose \(X = \{u_1, ..., u_k\}, Y = \{v_1, ..., v_h\} \).

By \(L2 \) and \(R2 \), there exist \(a_i, b_j \in F_q \) \((i \in [k], j \in [h])\) s.t.

\[
\sum_{i \in [k]} a_i g(u_i) = 0 \quad \sum_{j \in [h]} b_j g(v_j) = 0
\]

It is easy to check

\[
\sum_{i \in [k], j \in [h]} a_i b_j w_{\{u_i,v_j\}} = 0
\]

\(a_i b_j \neq 0 \) [by \(L1 \) and \(R1 \)]
No Case

If $G=(L \cup R, E)$ is a no instance of One-Side-Gap-Biclique(k, l, h).

Claim: any linearly dependent set $W' \subseteq W$ has $|W'| \geq k \frac{h}{l} \cdot h$

Let
• $X=\{u \in L : \text{there exists } v \in R \text{ s.t. } w_{\{u,v\}} \in W'\}$.
• $Y=\{v \in R : \text{there exists } u \in L \text{ s.t. } w_{\{u,v\}} \in W'\}$.
• $E'=\{\{u,v\} : w_{\{u,v\}} \in W'\}$.

Consider the graph $G'=(X \cup Y, E')$. It satisfies the following conditions:
1. Every vertex in X has at least h neighbors [By R1]
2. Every vertex in Y has at least k neighbors [By L1]
3. Every k-vertex set of X has at most l common neighbors [G is a no-instance]

From 1,2,3, we can deduce that $|X| \geq k \frac{h}{l}$

$|W'|=|E'| \geq h|X| \geq h^k \frac{h}{l}$
Gap Linear Dependent Set is Hard

On input an n-vertex instance G of **One-Side-Gap-Biclique**(k,l,h), $(\sqrt{k} + 1)! < l < h < n^{1/\sqrt{k}}$, one can construct a set W of $O(n^2)$ vectors in $F_{\Theta(n)}^{poly}$ in $poly(n)$ time such that

- **(yes)** if G is yes instance, then W has exactly kh linearly dependent vectors;
- **(no)** if G is no instance, then any $\sqrt{k\frac{h}{l}} \cdot h-1$ vectors are linearly independent.

Small gap, FPT lower bound:

Set $l = (\sqrt{2k}+1)!$, $h = k^k$ and $k' = kh$ so that $k'\log k'< \sqrt\frac{h}{l} h$

One-Side-Gap-Biclique(k,l,h) has no $f(k)n^{O(1)}$-time algorithm
\Rightarrow **Gap-Linear-Dependent-Set**($k',k'\log k'$) has no $f(k')n^{O(1)}$-time algorithm

Large gap, polynomial lower bound:

Set $l = (\sqrt{2k}+1)!$, $h = n^{1/\sqrt{2k}}$

One-Side-Gap-Biclique(k,l,h) has no $f(k)n^{O(1)}$-time algorithm \Rightarrow

Gap-Linear-Dependent-Set($n^{O(\frac{1}{\sqrt{2k}})}$, $n^{O(\frac{1}{\sqrt{2k}} + \frac{1}{k\sqrt{2k}})}$) has no $n^{O(1)}$-time algorithms.
Reduce Field Size
From F_{2d} to F_2^d

Observation: elements in F_{2d} can be written as vectors in F_2^d.

There exist $e_1, e_2, ..., e_d$ in F_{2d}, s.t. every element of F_{2d} can be expressed as a unique linear combination of $e_1, e_2, ..., e_d$.

Define $f : F_{2d} \to F_2^d$:

For all $c_1 e_1 + c_2 e_2 +, ..., + c_d e_d \in F_{2d}$

$$f(c_1 e_1 + c_2 e_2 +, ..., + c_d e_d) = (c_1, c_2, ..., c_d)$$

Extend f to $F_{2d}^m \to F_2^{dm}$

$$f(v_1, v_2, ..., v_m) = f(v_1) ++ f(v_2) ++ ... ++ f(v_m)$$

$++$: concatenation
Reduce Field Size: Naïve Approach

Let W be an instance of $\textbf{Gap-Linear-Dependent-Set}(k, k')$ over field F_n

Choose an integer $Q > k'$. For each $w_i \in W$, introduce $d = \log n$ vectors

Q copies

$w_{i1} = (f(e_1 w_i), f(e_1 w_i), ..., f(e_1 w_i), 0...0,1,0...,0,...,0)$

$w_{i2} = (f(e_2 w_i), f(e_2 w_i), ..., f(e_2 w_i), 0...0,0,1...,0,...,0)$

$w_{id} = (f(e_d w_i), f(e_d w_i), ..., f(e_d w_i), 0...0,0,0...,1,...,0)$

If W has k linear dependent vectors, then $<w_{11}, ..., w_{nd}>$ has a vector with distance at most $k \log n$.

If W is a no-instance, any vector in $<w_{11}, ..., w_{nd}>$ has distance at least k'.

$\textbf{Gap-Linear-Dependent-Set} \left(n^{O\left(\frac{1}{\sqrt{2k}}\right)}, n^{O\left(\frac{1}{\sqrt{2k} + \frac{1}{k\sqrt{2k}}}\right)} \right)$ over F_n has no $n^{O(1)}$-time algorithm

$\Rightarrow \textbf{Gap-MDP} \left(n^{O\left(\frac{1}{\sqrt{2k}}\right)} \log n, n^{O\left(\frac{1}{\sqrt{2k} + \frac{1}{k\sqrt{2k}}}\right)} \right)$ over binary field has no $n^{O(1)}$-time algorithm
Reduce Field Size: Going Through NCP

Nearest Codeword Problem (NCP):

Input: a set $W=\{w_1,\ldots,w_n\}$ of vectors in F_2^m and t in F_2^m, $m=n^{O(1)}$ and k.

Parameter: k

Question: decide if there is a vector x in $<w_1,\ldots,w_n>$ with $d(x-t)<=k$.

FPT-inapproximability of k-NCP=>W[1]-hardness of k-EvenSet (under randomized reduction)

Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH [Arnab et al. ICALP 2018]

To prove FPT-inapproximability of k-NCP, it suffices to refute FPT-algorithm for Gap-OddSet.
Gap-Odd-Set Problem

Gap-OddSet(k,k'):

Input: a set $W=\{w_1,\ldots,w_n\}$ of vectors in F_2^m ($m=n^{O(1)}$) and integers $k'>k$.

Parameter: k

Question: distinguish between the following cases:

- (yes) W has k vectors whose sum is $(1,1,\ldots,1)$.
- (no) For all subset X of W with $|X|<k'$, $\sum_{x \in X} x \neq (1,1,\ldots,1)$.

Gap-Odd(k+1,3k+1) has no FPT-algorithm

Proof:

- Reduction from Gap-Linear-Dependent-Set-Col(k,klogk)
Color version of Gap-Linear-Dependent-Set

Gap-Linear-Dependent-Set-C\textnormal{ol}(k,k'):

\textbf{Input}: a set $W=\{w_1,\ldots,w_n\}$ of vectors in F_q^m, $m=n^{O(1)}, k'>k$, a coloring $c:W\rightarrow[k]$

\textbf{Parameter}: k

\textbf{Question}: distinguish between the following cases:
• (yes) W contains \textbf{exactly} k linearly dependent vectors with distinct colors under c
• (no) any k' vectors in W are not linearly dependent.

\textbf{Gap-Linear-Dependent-Set-Col}(k',k'\log k') has no FPT-algorithm

\textbf{Proof}:
• \textbf{color-coding} + reduction from \textbf{One-Side-Gap-Biclique}
From Color Linear Dependent Set to Odd Set

Let W be an instance of $\text{Gap-Linear-Dependent-Set-Col}(k,k\log k)$ over F_{2^d}, $d=O(\log n)$.

For each $w \in W$ and $a \in F_{2^d} - \{0\}$, define

$$c(w_i)$$

$$F(a,w) = (0, f(aw), 0, 0, \ldots, 1, \ldots, 0)$$

The target Odd Set instance W' contains all $F(a,w)$ and $w'=(1,1,\ldots,1,0,0,\ldots,0)$

- If W is a yes-instance, then W' has $k+1$ vectors whose sum is $(1,1,\ldots,1)$
- If W is a no-instance, then any subset X of W' whose sum is $(1,1,\ldots,1)$ must have $|X| > 3k$.
Yes Case

If \(W \) is a yes instance of \textbf{Gap-Linear-Dependent-Set-Col}(k,k\log k). There exist \(w_1, w_2, \ldots, w_k \) in \(W \) and \(a_1, a_2, \ldots, a_k \) in \(F_{2^d} - \{0\} \), so that

\[
\sum_{i \in [k]} a_i w_i = (0, 0, \ldots, 0)
\]

And \(c(w_i) = i \) for all \(i \) in \([k]\).

It is easy to check

\[
w' + \sum_{i \in [k]} F(a_i, w_i) = (1, 1, \ldots, 1)
\]

\[
F(a_1, w_1) = (0, f(a_1 w_1), 1, 0, \ldots, 0)
\]

\[
F(a_2, w_2) = (0, f(a_2 w_2), 0, 1, \ldots, 0)
\]

\[
F(a_k, w_k) = (0, f(a_k w_k), 0, 0, \ldots, 1)
\]

\[
w' = (1, 1, 1, \ldots, 1, 0, 0, \ldots, 0)
\]
No Case

If W is a no instance of $\textbf{Gap-Linear-Dependent-Set-Col}(k, k\log k)$.

Let X be a subset of W' with

$$\sum_{x \in X} x = (1, 1, \ldots, 1)$$

Need to show $|X| > 3k + 1$

1. X must contain w'

2. $\sum_{j \in [k']} a_j x_j = (0, 0, \ldots, 0)$, does not imply \{\(x_1, \ldots, x_{k'}\)\} is linearly dependent

Caution: \([x_1, \ldots, x_{k'}]\) may contain duplicated elements!
No Case

If \(W \) is a no instance of \textbf{Gap-Linear-Dependent-Set-Col}(k,k\log k).

Let \(X \) be a subset of \(W' \) with
\[
\sum_{x \in X} x = (1, 1, \ldots, 1)
\]

Need to show \(|X| > 3k + 1\)

1. \(X \) must contain \(w' \)
2. Let \(F(a,w) \) and \(w \) have the same color. For every \(i \) in \([k]\), \(X \) must contain odd number of vectors with color \(i \).
3. If for all \(i \) in \([k]\), \(X \) has 3 vectors with color \(i \), then \(|X| \geq 3k + 1\), Done.
4. If for some \(i \) in \([k]\), \(X \) contains 1 vector with color \(i \), then
 \[
a_i x_i + \sum_{j \in [k']-\{i\}} a_j x_j = (0, 0, \ldots, 0)
 \]
 \(\{x_1, \ldots, x_{k'}\} \) is linearly dependent

\(k' > k \log k \)
Conclusions

For large finite field $F_{\text{poly}}(n)$:
Assuming $\text{FPT} \neq \text{W}[1]$, there is no $f(k)n^{O(1)}$-time algorithm for
• Gap-Linear-Dependent-Set
• Gap-MDP

For binary field:
Assuming $\text{FPT} \neq \text{W}[1]$, Gap-MDP has no polynomial-time algorithms
Assuming $\text{FPT} \neq \text{W}[1]$, Gap-OddSet has no FPT-algorithms
Combine the result of Arnab et al. [ICALP '18], we prove Even-Set is $\text{W}[1]$-hard
(under randomized reduction)

Open questions:
1. Find a deterministic reduction for $\text{W}[1]$-hardness of Even Set.
2. Reduce field size without going through Nearest Codeword.
Thank You!